A space and time scale-dependent nonlinear geostatistical approach for downscaling daily precipitation and temperature
نویسندگان
چکیده
A geostatistical framework is proposed to downscale daily precipitation and temperature. The methodology is based on multiple-point geostatistics (MPS), where a multivariate training image is used to represent the spatial relationship between daily precipitation and daily temperature over several years. Here the training image consists of daily rainfall and temperature outputs from the Weather Research and Forecasting (WRF) model at 50 and 10 km resolution for a 20 year period ranging from 1985 to 2004. The data are used to predict downscaled climate variables for the year 2005. The result, for each downscaled pixel, is daily time series of precipitation and temperature that are spatially dependent. Comparison of predicted precipitation and temperature against a reference data set indicates that both the seasonal average climate response together with the temporal variability are well reproduced. The explicit inclusion of time dependence is explored by considering the climate properties of the previous day as an additional variable. Comparison of simulations with and without inclusion of time dependence shows that the temporal dependence only slightly improves the daily prediction because the temporal variability is already well represented in the conditioning data. Overall, the study shows that the multiple-point geostatistics approach is an efficient tool to be used for statistical downscaling to obtain local-scale estimates of precipitation and temperature from General Circulation Models.
منابع مشابه
Comparison of climate change scenarios generated from regional climate model experiments and statistical downscaling
We compare regional climate change scenarios (temperature and precipitation) over eastern Nebraska produced by a semiempirical statistical downscaling (SDS) technique and regional climate model (RegCM2) experiments, both using large scale information from the same coarse resolution general circulation model (GCM) control and 2 x COe simulations. The SDS method is based on the circulation patter...
متن کاملEvaluate the performance of SDSM model in different station and predict climate variables for future
According to the fourth report from the IPCC was confirmed climate change and its impacts on drought, floods, health problems and food shortages. Therefore, understanding of how climate change could be important in the management of resources, especially water resources management. Atmosphere-Ocean Global Circulation Models (AOGCM) are tools for predicting the future climate variables and it mu...
متن کاملUtility of daily vs. monthly large-scale climate data: an intercomparison of two statistical downscaling methods
Downscaling of climate model data is essential to local and regional impact analysis. We compare two methods of statistical downscaling to produce continuous, gridded time series of precipitation and surface air temperature at a 1/8-degree (approximately 140 km2 per grid cell) resolution over the western U.S. We use NCEP/NCAR Reanalysis data from 1950–1999 as a surrogate General Circulation Mod...
متن کاملComparison of data-driven methods for downscaling ensemble weather forecasts
This study investigates dynamically different data-driven methods, specifically a statistical downscaling model (SDSM), a time lagged feedforward neural network (TLFN), and an evolutionary polynomial regression (EPR) technique for downscaling numerical weather ensemble forecasts generated by a medium range forecast (MRF) model. 5 Given the coarse resolution (about 200-km grid spacing) of the MR...
متن کاملComparison of LARS-WG and SDSM Downscaling Models for Prediction Temperature and Precipitation Changes under RCP Scenarios
Various methods developed to convert large-scale data to regional climatic data. In few studies , the results of these methods have been statistically compared. The main purpose of this study was to compare SDSM and LARS-WG models for Downscaling output data of CANE-SM2 and HADGEM2-ES general circulation models under RCP2.6, RCP4.5 and RCP8.5 scenarios. For this study, precipitation, minimum an...
متن کامل